Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.09.22.23295541

RESUMEN

Our understanding of the quality of cellular and humoral immunity conferred by COVID-19 vaccination alone versus vaccination plus SARS-CoV-2 breakthrough (BT) infection remains incomplete. While the current (2023) SARS-CoV-2 immune landscape of Canadians is complex, in late 2021 most Canadians had either just received a third dose of COVID-19 vaccine, or had received their two dose primary series and then experienced an Omicron BT. Herein we took advantage of this coincident timing to contrast cellular and humoral immunity conferred by three doses of vaccine versus two doses plus BT. Our results show that mild BT infection induces cell-mediated immune responses to variants comparable to an intramuscular vaccine booster dose. In contrast, BT subjects had higher salivary IgG and IgA levels against the Omicron Spike and enhanced reactivity to the ancestral Spike for the IgA isotype, which also reacted with SARS-CoV-1. Serum neutralizing antibody levels against the ancestral strain and the variants were also higher after BT infection. Our results support the need for mucosal vaccines to emulate the enhanced mucosal and humoral immunity induced by Omicron without exposing individuals to the risks associated with SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Dolor Irruptivo
2.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.08.01.21261297

RESUMEN

The first line of defense against SARS-CoV-2 is the upper respiratory tract, yet we know little about the amount, type, and kinetics of mucosal anti-Spike antibodies (Ab) in response to intramuscular (i.m.) COVID-19 vaccination. We analyzed salivary Ab against SARS-CoV-2 Spike following mRNA/mRNA and adenovirus (Ad)/mRNA regimes. While anti-Spike/RBD IgG was detected in the saliva and correlated with the systemic response, anti-Spike/RBD IgA associated with the secretory component (sIgA) was also detected, and did not necessarily correlate with serum Ab. Only modest levels of neutralizing capacity were observed in saliva at 2 weeks post-dose 2, and by 6 months, anti-Spike/RBD IgG were greatly diminished. In contrast, low levels of anti-Spike sIgA persisted up to 6 months after dose 2. Our results show that SARS-CoV-2 vaccination induces an IgG response in the saliva that decays over time and an sIgA response that does not necessarily correlate with systemic immunity. One-Sentence SummaryOur study delves into how intra-muscular mRNA/mRNA or mRNA/Ad COVID-19 vaccination regimes confer immunity in the oral cavity with important implications for understanding protection against breakthrough infections in healthy vaccinated people.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave
3.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.06.08.21258518

RESUMEN

SARS-CoV-2 induces T cell, B cell and antibody responses that are detected for several months in recovered individuals. Whether this response resembles a typical respiratory viral infection is a matter of debate. Here we followed T cell and antibody responses in 24 mainly non-hospitalized SARS-CoV-2 recovered subjects at two time points (median of 45- and 145-days post-symptom onset). Antibody responses were detected in 95% of subjects, with a strong correlation between plasma and salivary anti-S and anti-RBD IgG, as well as a correlation between circulating T follicular helper cells and the SARS-CoV-2-specific IgG response. Based on intracellular cytokine production or proliferation, CD4+ T cell responses to SARS-CoV-2 were detected in all subjects, decaying with a half-life of 5-6 months for S-specific IL-2-producing cells. CD4+ responses were largely of the T helper 1 phenotype, but with a lower ratio of IFN-{gamma} : IL-2 producing cells and a lower frequency of CD8+: CD4+ T cells compared to influenza A virus-(IAV)-specific memory responses within the same subjects. Analysis of secreted molecules also revealed a lower ratio of IFN-{gamma}: IL-2 and IFN-{gamma}: IL-6 and an altered cytotoxic profile for S- and N-specific compared to IAV-specific responses. These data suggest that the memory T-cell phenotype after a single infection with SARS-CoV-2 persists over time, with an altered cytokine and cytotoxic profile compared to long term memory to IAV within the same subjects.


Asunto(s)
Infecciones del Sistema Respiratorio , Síndrome Respiratorio Agudo Grave
4.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.05.16.21256907

RESUMEN

The COVID-19 pandemic has resulted in a worldwide health crisis. Rapid diagnosis, new therapeutics and effective vaccines will all be required to stop the spread of COVID-19. Quantitative evaluation of serum antibody levels against the SARS-CoV-2 virus provides a means of monitoring a patient's immune response to a natural viral infection or vaccination, as well as evidence of a prior infection. In this paper, a portable and low-cost electrochemical immunosensor is developed for the rapid and accurate quantification of SARS-CoV-2 serum antibodies. The immunosensor is capable of quantifying the concentrations of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies against the SARS-CoV-2 spike protein in human serum. For IgG and IgM, it provides measurements in the range of 10.1 ng/mL--60 g/mL and 1.64 ng/mL -- 50 g/mL, respectively, and both antibodies can be assayed in 13 min. We also developed device stabilization and storage strategies to achieve stable performance of the immunosensor within 24-week storage at room temperature. We evaluated the performance of the immunosensor using COVID-19 patient serum samples collected at different time points after symptom onset. The rapid and sensitive detection of IgG and IgM provided by our immunosensor fulfills the need of rapid COVID-19 serology testing for both point-of-care diagnosis and population immunity screening.


Asunto(s)
COVID-19 , Virosis
5.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.04.08.439006

RESUMEN

The COVID-19 pandemic has affected more than 120 million people and resulted in over 2.8 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all of the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. Here, we describe intranasal immunization of a COVID-19 vaccine delivered by a novel platform, the helper-dependent adenoviral (HD-Ad) vector. Since HD-Ad vectors are devoid of adenoviral coding sequences, they have a superior safety profile and a large cloning capacity for transgenes. The vaccine (HD-Ad_RBD) codes for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and intranasal immunization induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. As such, intranasal immunization based on the HD-Ad vector promises to provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants.


Asunto(s)
Enfermedad de Huntington , Apnea Obstructiva del Sueño , COVID-19
6.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423603

RESUMEN

The Spike protein of SARS-CoV2 and other coronaviruses mediate host cell entry and are S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes of the ZDHHC family have been reported to modify Spike proteins post-translationally. Using resin-assisted capture mass spectrometry, we demonstrate that the Spike protein is S-acylated in SARS-CoV2 infected human and monkey cells. We further show that increased abundance of the human acyltransferase ZDHHC5 results in increased S-acylation of the SARS-CoV2 Spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also find that the S-acylation of the Spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also found on the immunocaptured protein. Yet, ZDHHC5 was highly selective for palmitate, suggesting that other ZDHHC enzymes mediated the incorporation of other fatty acyl chains. Thus, since multiple ZDHHC isoforms may modify the Spike protein, we examined the ability of the fatty acid synthase inhibitor TVB-3166 to prevent the S-acylation of the Spike proteins of SARS-CoV-2 and human CoV-229E. Treating cells with TVB-3166 inhibited S-acylation of ectopically expressed SARS-CoV2 Spike and attenuated the ability of SARS-CoV2 and human CoV-229E to spread in vitro. Additionally, treatment of mice with a comparatively low dose of TVB-3166 promoted survival from an otherwise fatal murine coronavirus infection. Our findings further substantiate the necessity of CoV Spike protein S-acylation and the potential use of fatty acid synthase inhibitors.


Asunto(s)
Infecciones por Coronavirus
7.
researchsquare; 2020.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-115221.v1

RESUMEN

To meet the urgent demand for better diagnostic tools to combat the ongoing COVID-19 pandemic, we developed a homogeneous immunoassay to detect IgG antibodies against SARS-CoV-2. This assay is based on a tri-part Nanoluciferase (tNLuc) approach, in which the spike protein of SARS-CoV-2 and protein G, fused respectively to two different tNLuc tags, are used as antibody probes. Target engagement of the probes allows reconstitution of a functional luciferase in the presence of the third tNLuc component. The assay is performed directly in liquid phase of patient sera and enables rapid, quantitative and low-cost detection. We show that tNLuc maintains a similar sensitivity to ELISA, while its readouts are highly consistent with various neutralizing antibody assays. This proof-of-principle study suggests potential applications in diagnostics and disease and vaccination management. 


Asunto(s)
COVID-19
8.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.10.31.362848

RESUMEN

Recombinant neutralizing antibodies (nAbs) derived from recovered patients have proven to be effective therapeutics for COVID-19. Here, we describe the use of advanced protein engineering and modular design principles to develop tetravalent synthetic nAbs that mimic the multi-valency exhibited by IgA molecules, which are especially effective natural inhibitors of viral disease. At the same time, these nAbs display high affinity and modularity typical of IgG molecules, which are the preferred format for drugs. We show that highly specific tetravalent nAbs can be produced at large scale and possess stability and specificity comparable to approved antibody drugs. Moreover, structural studies reveal that the best nAb targets the host receptor binding site of the virus spike protein, and thus, its tetravalent version can block virus infection with a potency that exceeds that of the bivalent IgG by an order of magnitude. Design principles defined here can be readily applied to any antibody drug, including IgGs that are showing efficacy in clinical trials. Thus, our results present a general framework to develop potent antiviral therapies against COVID-19, and the strategy can be readily deployed in response to future pathogenic threats.


Asunto(s)
COVID-19 , Virosis , Infecciones Tumorales por Virus
9.
chemrxiv; 2020.
Preprint en Inglés | PREPRINT-CHEMRXIV | ID: ppzbmed-10.26434.chemrxiv.13083479.v1

RESUMEN

This manuscript describes a new method that enables direct analysis of viral particles in unprocessed samples.Using an electrochemical readout method that requires no external reagents, we detect the SARS-CoV-2 virus in the saliva of infected patients.The approach relies on a molecular sensor tethered to the surface of a gold electrode that contains an antibody, specific to the targetof interest, which here is the SARS-CoV-2 S1 spike protein that is displayed on the viral capsule. The antibody is attached to the electrode using a negatively charged linker that is composed of DNA. When a positive potential is applied to the electrode, the sensor complex is attracted to the electrode surface. The kinetics of transport is measured using chronoamperometry and readout is possible based on the absense or precense of virus and its effect on the complex movevment on electrode surface.

10.
chemrxiv; 2020.
Preprint en Inglés | PREPRINT-CHEMRXIV | ID: ppzbmed-10.26434.chemrxiv.13103561.v1

RESUMEN

This manuscript describes a new method that enables direct analysis of viral particles in unprocessed samples.Using an electrochemical readout method that requires no external reagents, we detect the SARS-CoV-2 virus in the saliva of infected patients.The approach relies on a molecular sensor tethered to the surface of a gold electrode that contains an antibody, specific to the targetof interest, which here is the SARS-CoV-2 S1 spike protein that is displayed on the viral capsule. The antibody is attached to the electrode using a negatively charged linker that is composed of DNA. When a positive potential is applied to the electrode, the sensor complex is attracted to the electrode surface. The kinetics of transport is measured using chronoamperometry and readout is possible based on the absense or precense of virus and its effect on the complex movevment on electrode surface.


Asunto(s)
Infecciones
11.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.08.27.20183319

RESUMEN

There is a pressing need for an in-depth understanding of immunity to SARS-CoV-2. Here we investigated T cell recall responses to fully glycosylated Spike trimer, recombinant N protein as well as to S, N, M and E peptide pools in the early convalescent phase. All subjects showed SARS-CoV-2-specific T cell responses to at least one antigen. SARS-CoV-2-specific CD4+ T cells were primarily of the central memory phenotype and exhibited a lower IFN-[gamma] to TNF-[alpha] ratio compared to influenza-specific responses of the same donors, independent of disease severity. SARS-CoV-2-specific T cells were less multifunctional than influenza-specific T cells, particularly in severe cases, potentially suggesting exhaustion. High IL-10 production was noted in response to N protein, possibly contributing to immunosuppression, with potential implications for vaccine design. We observed granzyme B+/IFN-[gamma] CD4+ and CD8+ proliferative responses to peptide pools in most individuals, with CD4+ responses predominating over CD8+ responses. Peripheral T follicular helper responses to S or N strongly correlated with serum neutralization assays as well as RBD-specific IgA. Overall, T cell responses to SARS-CoV-2 are robust, however, CD4+ Th1 responses predominate over CD8+ responses and are more inflammatory with a weaker Tfh response than influenza-specific CD4+ responses, potentially contributing to COVID-19 disease.


Asunto(s)
COVID-19
12.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.08.01.20166553

RESUMEN

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the mucosal immune response and its relationship to systemic antibody levels. Since SARS-CoV-2 initially replicates in the upper airway, the antibody response in the oral cavity is likely an important parameter that influences the course of infection. We developed enzyme linked immunosorbent assays to detect IgA and IgG antibodies to the SARS-CoV-2 spike protein (full length trimer) and its receptor binding domain (RBD) in serum (n=496) and saliva (n=90) of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Whereas anti-CoV-2 IgA antibodies rapidly decayed, IgG antibodies remained relatively stable up to 115 days PSO in both biofluids. Importantly, IgG responses in saliva and serum were correlated, suggesting that antibodies in the saliva may serve as a surrogate measure of systemic immunity.


Asunto(s)
COVID-19
13.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.07.10.197913

RESUMEN

With the COVID-19 pandemic surpassing 12M confirmed cases and 550K deaths worldwide, defining the key components of the immune response to SARS-CoV-2 infection is critical. Of particular importance is the identification of immune correlates of infection that would support public health decision-making on treatment approaches, vaccination strategies, and convalescent plasma therapy. While ELISA-based assays to detect and quantitate antibodies to SARS-CoV-2 in patient samples have been developed, the detection of neutralizing antibodies typically requires more demanding cell-based viral assays. Here, we present and validate a safe and efficient protein-based assay for the detection of serum and plasma antibodies that block the interaction of the SARS-CoV-2 spike (S) protein receptor binding domain (RBD) with its receptor, angiotensin converting-enzyme 2 (ACE2). This test is performed on the same platform and in parallel with an enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against the RBD and serves as a surrogate neutralization assay.


Asunto(s)
COVID-19
14.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.06.05.137349

RESUMEN

Coronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds. Three highly pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome CoV (MERS), Severe Acute Respiratory Syndrome CoV (SARS), and the ongoing Coronavirus Disease 2019 (COVID-19) pandemic. Here, we describe a panel of synthetic monoclonal antibodies, built on a human IgG framework, that bind to the spike protein of SARS-CoV-2 (the causative agent of COVID-19), compete for ACE2 binding, and potently inhibit SARS-CoV-2. All antibodies that exhibited neutralization potencies at sub-nanomolar concentrations against SARS-CoV-2/USA/WA1 in Vero E6 cells, also bound to the receptor binding domain (RBD), suggesting competition for the host receptor ACE2. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19.


Asunto(s)
COVID-19 , Infecciones por Coronavirus , Zoonosis
15.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.04.27.20074849

RESUMEN

BackgroundThe purpose of current study is to evaluate the analytical performance of seven kits for detecting IgM/IgG antibody of corona virus (2019-nCoV) by using four chemiluminescence immunoassay systems. Methods50 patients diagnosed with 2019-nCoV infection and 130 controls without corona virus infection from the General Hospital of Chongqing were enrolled in current retrospective study. Four chemiluminescence immunoassay systems including seven IgM/IgG antibody detection Kits for 2019-nCoV (A_IgM, A_IgG, B_IgM, B_IgG, C_IgM, C_IgG, D_Ab) were employed to detecting antibody concentration. Chi-square test, receiver operating characteristic (ROC) curve and Youdens index were demonstrated to verify the cutoff value of each detection system. ResultsThe repeatability verification results of the A, B, C, and D system are all qualified. D-Ab performances best (92% sensitivity and 99.23% specificity), and B_IgM worse than other systems. Except for the system of A_IgM and C_IgG, the optimal diagnostic thresholds and cutoff value of other kits from recommendations are inconsistent with each other. B_IgM got the worst AUC and C_IgG had the best diagnostic accuracy. More importantly, B_IgG system have the highest false positive rate for testing patients with AIDS, tumor and pregnant. A_IgM system test showed highest false positive rates among elder over 90 years old. ConclusionsSystems for CoVID-2019 IgM/IgG antibody test performance difference. Serum diagnosis kit of D-Ab is the most reliable detecting system for 2019-nCoV antibody, which can be used as an alternative method for nucleic acid testing.


Asunto(s)
COVID-19
16.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.02.22.20026617

RESUMEN

A respiratory illness has been spreading rapidly in China, since its outbreak in Wuhan city, Hubei province in December 2019. The illness was caused by a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical manifestations related to SARS-CoV-2 infection ranged from no symptom to fatal pneumonia. World Health Organization (WHO) named the diseases associated with SARS-CoV-2 infection as COVID-19. Real time RT-PCR is the only laboratory test available till now to confirm the infection. However, the accuracy of real time RT-PCR depends on many factors, including sampling location and of methods, quality of RNA extraction and training of operators etc. Variations in these factors might significantly lower the sensitivity of the detection. We developed a peptide-based luminescent immunoassay to detect IgG and IgM. Cut-off value of this assay was determined by the detection of 200 healthy sera and 167 sera from patients infected with other pathogens than SARS-CoV-2. To evaluate the performance of this assay, we detected IgG and IgM in the 276 sera from confirmed patients. The positive rate of IgG and IgM were 71.4% (197/276) and 57.2% (158/276) respectively. By combining with real time RT-PCR detection, this assay might help to enhance the accuracy of diagnosis of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Neumonía
17.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.02.17.945014

RESUMEN

RNA knockdown in vivo carries significant potential for disease modelings and therapies. Despite the emerging approaches of CRISPR/Cas9-mediated permanent knock out of targeted genes, strategies targeting RNA for disruption are advantageous in the treatment of acquired metabolic disorders when permanent modification of the genome DNA is not appropriate, and RNA virus infection diseases when pathogenic DNA is not available (such as SARS-Cov-2 and MERS infections). Recently, Cas13d, a family of RNA-targeting CRISPR effectors, has been shown to accomplish robust down-regulation of cellular RNAs in mammalian cells in vitro . Among the various Cas13d subtypes, CasRx (RfxCas13d) showed the most potent RNA knockdown efficiency in HEK293T cells. However, the RNA-targeting activity of Cas13d still needs to be verified in vivo . In this study, the CasRx system was demonstrated to efficiently and functionally knock down genes related to metabolism functions, including Pten, Pcsk9 and lncLstr , in mouse hepatocytes. CasRx-mediated simultaneous knockdown of multiple genes was also achieved by sgRNA arrays, providing a useful strategy to modulate complex metabolism networks. Moreover, the AAV (adeno-associated virus)-mediated delivery of CasRx and Pcsk9 sgRNAs into mouse liver successfully decreased serum PCSK9, resulting in significant reduction of serum cholesterol levels. Importantly, CasRx-mediated knockdown of Pcsk9 is reversible and Pcsk9 could be repeatedly down-regulated, providing an effective strategy to reversibly modulate metabolic genes. The present work supplies a successful proof-of-concept trial that suggests efficient and regulatory knockdown of target metabolic genes for a designed metabolism modulation in the liver.


Asunto(s)
Enfermedades Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA